High-Mass Star Formation — The Herschel View: Status & Future Prospects —

Alana Rivera Ingraham (ESA-ESAC) Anthony Marston (ESA-STScI) & the HOBYS, Hi-Gal & GCC Consortia

OVERVIEW

Mass	Designation	Sp. type
$8-16 \ M_{\odot}$	Early B-type massive stars	B3V to B0V
$16-32 \ M_{\odot}$	Late O-type massive stars	O9V to O6V
32–64 <i>M</i> _☉	Early O-type massive stars	O5V to O2V ^a
64–128 <i>M</i> _☉	O/WR-type massive stars	WNL-H ^b

Zinnecker et al 2007

- ISM dynamics/ chemistry
- Structure formation & evolution (from planets to galaxy scales)

OVERVIEW

10

0.1

1.0

100.0

10.0

м [M_☉]

 M_{\circ}

Ξ

1000.0

OVERVIEW

THEORETICAL CHALLENGES

Evolution: Mechanism, prestellar cores?...

Physics: e.g., Radiation pressure

Preferential Cluster formation

Cluster primordial mass segregation and age distribution

Bimodality? Threshold?

OBSERVATIONAL CHALLENGES

Large Distances (kpc -Resolution)

Rare (Statistics)

Disruptive

Short lifetimes

Highly-embedded (IR/submm) Highly Clustered (Resolution) esa

- MC Environment (>1pc scale) (e.g., Rivera-Ingraham et al. 2015)
- Clumps (0.5-1pc scale) + Filaments (e.g., Rivera-Ingraham et al. 2015; 2016)
- MDCs (0.1pc scale): (Rivera-Ingraham et al. 2017, submm)
 - Complete catalogue
 - Evolutionary classification
 - Characterization (stellar content, physical properties)
- Statistical Studies (Rivera-Ingraham et al. 2017b, in prep)

- Herschel imaging survey of OB Young Stellar objects - (HOBYS; PI. F. Motte)
- the Herschel infrared Galactic Plane Survey - (Hi-GAL; Pl. S. Molinari)
- Galactic Cold Cores (GCC; PI. M. Juvela)

NH₂ [cm⁻²]

0.10

0

0

10000

Clump (Environ) **EVOLUTION** 10⁶ [10⁵ r [L₀] 10⁴ Stellar, Evolution 10³ 10 100 1000 00 M [M_☉] \bigcirc

Μ	DCs
---	-----

Parameter	All	Active	Inactive	Inactive	Inactive
		[IR-bright]	[IR-quiet+starless+UCS]	[IR-quiet]	[Starless]
Number	442	3	30	10	6
Mass $[M_{\odot}]$	25 ± 3	324 ± 251	126 ± 9	118 ± 16	107 ± 10
<t [<i="">K]></t>	16.4 ± 0.3	34.7 ± 5.2	14.1 ± 1.2	11.7 ± 0.9	12.7 ± 3.2
$L_{\rm bol} \ [L_{\odot}]$	268 ± 106	24721 ± 6879	666 ± 226	80 ± 53	828 ± 821
$L_{ m sub/bol}$	0.094 ± 0.004	0.004 ± 0.003	0.186 ± 0.026	0.190 ± 0.030	0.238 ± 0.052
FWHM ^a [pc]	~0.10	0.07 ± 0.02	0.15 ± 0.01	0.16 ± 0.02	0.18 ± 0.02
$< n_{\rm H_2} > [10^5 {\rm cm}^{-3}]$	1.2 ± 0.1	15.3 ± 1.6	3.3 ± 0.7	2.2 ± 0.7	0.7 ± 0.2
$N_{\rm H_2,p}$ [10 ²² cm ⁻²]	1.2 ± 0.2	20.6 ± 4.4	4.5 ± 1.1	1.9 ± 0.7	1.4 ± 0.7
$N_{\rm H_2,env} [10^{22} \rm cm^{-2}]$	~1.0	4.2 ± 0.3	2.0 ± 0.3	1.6 ± 0.4	1.3 ± 0.5
X _{ISRF}	2.3 ± 0.2	13.1 ± 5.7	5.9 ± 1.5	2.2 ± 1.1	2.6 ± 1.9

Parameter	All	Active	Inactive	Inactive	Inactive
		[IR-bright]	[IR-quiet+starless+UCS]	[IR-quiet]	[Starless]
Number	442	3	30	10	6
Mass $[M_{\odot}]$	25 ± 3	324 ± 251	126 ± 9	118 ± 16	107 ± 10
<t [<i="">K]></t>	16.4 ± 0.3	34.7 ± 5.2	14.1 ± 1.2	11.7 ± 0.9	12.7 ± 3.2
$L_{\rm bol} \ [L_{\odot}]$	268 ± 106	24721 ± 6879	666 ± 226	80 ± 53	828 ± 821
$L_{ m sub/bol}$	0.094 ± 0.004	0.004 ± 0.003	0.186 ± 0.026	0.190 ± 0.030	0.238 ± 0.052
FWHM ^a [pc]	~0.10	0.07 ± 0.02	0.15 ± 0.01	0.16 ± 0.02	0.18 ± 0.02
$< n_{\rm H_2} > [10^5 {\rm cm}^{-3}]$	1.2 ± 0.1	15.3 ± 1.6	3.3 ± 0.7	2.2 ± 0.7	0.7 ± 0.2
$N_{\rm H_2,p} [10^{22} {\rm cm}^{-2}]$	1.2 ± 0.2	20.6 ± 4.4	4.5 ± 1.1	1.9 ± 0.7	1.4 ± 0.7
$N_{\rm H_2,env}$ [10 ²² cm ⁻²]	~1.0	4.2 ± 0.3	2.0 ± 0.3	1.6 ± 0.4	1.3 ± 0.5
X _{ISRF}	2.3 ± 0.2	13.1 ± 5.7	5.9 ± 1.5	2.2 ± 1.1	2.6 ± 1.9

★NH ₂ (peak) [bright/quiet]	~11
★FWHM [quiet/bright]	~2
★ n [bright/quiet]	~7
★NH₂(env) [bright/quiet]	~2.5

_					
Parameter	All	Active	Inactive	Inactive	Inactive
		[IR-bright]	[IR-quiet+starless+UCS]	[IR-quiet]	[Starless]
Number	442	3	30	10	6
Mass $[M_{\odot}]$	25 ± 3	324 ± 251	126 ± 9	118 ± 16	107 ± 10
<t [<i="">K]></t>	16.4 ± 0.3	34.7 ± 5.2	14.1 ± 1.2	11.7 ± 0.9	12.7 ± 3.2
$L_{\rm bol} \ [L_{\odot}]$	268 ± 106	24721 ± 6879	666 ± 226	80 ± 53	828 ± 821
$L_{\rm sub/bol}$	0.094 ± 0.004	0.004 ± 0.003	0.186 ± 0.026	0.190 ± 0.030	0.238 ± 0.052
FWHM ^a [pc]	~0.10	0.07 ± 0.02	0.15 ± 0.01	0.16 ± 0.02	0.18 ± 0.02
$< n_{\rm H_2} > [10^5 {\rm cm}^{-3}]$	1.2 ± 0.1	15.3 ± 1.6	3.3 ± 0.7	2.2 ± 0.7	0.7 ± 0.2
$N_{\rm H_2,p}$ [10 ²² cm ⁻²]	1.2 ± 0.2	20.6 ± 4.4	4.5 ± 1.1	1.9 ± 0.7	1.4 ± 0.7
$N_{\rm H_2,env} [10^{22} {\rm cm}^{-2}]$	~1.0	4.2 ± 0.3	2.0 ± 0.3	1.6 ± 0.4	1.3 ± 0.5
- X _{ISRF}	2.3 ± 0.2	13.1 ± 5.7	5.9 ± 1.5	2.2 ± 1.1	2.6 ± 1.9

MDCs

★NH ₂ (peak) [bright/quiet]	~18.5
★FWHM [quiet/bright]	~1.5
★ n [bright/quiet]	~9.5
★NH₂(env) [bright/quiet]	~4

esa

BIMODALITY IN HMSF

If M criterium is the key , then...

<u> Gravity (Large Scale Collapse)</u>

Easiest way, most common

Externally Driven SF Mode (direct triggering)

e.g., CCF Model

- Most common
- (extended) LMSF coeval with HMSF (youngest)
- Age distribution, primordial mass segregation

BIMODALITY IN HMSF

High-mass Stars Form in Clusters

Clusters form WITH High-Mass Stars **'Isolated' HMSF** (loosely bound) only achieved by ED-mode

reversal

~15% RARE clusterforming mode!!

SUMMARY & FUTURE PROSPECTS

[Single-Star Envelopes vs IMF: Seeds or cores? Interferometry: ALMA, PdBI...]

(1) Rivera-Ingraham et al. 2013; 2015 (2) Rivera-Ingraham et al. 2017a; 2017b