Dust studies in Herschel Cold Cores fields

- Dust Opacity
- Dust Spectral Index
- Modelling Clump Structure
- Estimating Extinction

M. Juvela Toulouse 2015

Paper V: **Dust Opacity**

- to determine the value of dust opacity
 - in reality, the submillimetre opacity in relation to near-infrared extinction
- to compare the values in the different regions
- to examine variations within the fields, as function of column density

Galactic cold cores V. Dust opacity * **

M. Juvela¹, I. Ristorcelli^{2, 3}, D.J. Marshall⁴, J. Montillaud^{1, 5}, V.-M. Pelkonen^{1, 6}, N. Ysard⁷, P. McGehee⁸, R. Paladini⁸, L. Pagani⁹, J. Malinen¹, A. Rivera-Ingraham², C. Lefèvre⁹ L.V. Tóth¹⁰, L.A. Montier^{2, 3}, J.-P. Bernard^{2, 3}, P. Martin

 $\frac{I_{\nu}(250\mu\mathrm{m})}{B~(T)}$ τ (250 μ m)

Dust optical depth $T(250\mu m)$

- mod. black body fits 100-500μm, 250-500μm
 - SPIRE provides significantly larger area
 - shorter wavelengths give better constraints of temperature
 - spectral index fixed to a value of β =2.0
 - higher than values ~1.8 found in diffuse medium, ~30% effect on κ

Near-infrared optical depth τ_1

- using the reddening of the background stars
 - NICER: combining J-H and H-K data, comparing with the average colours in a reference area
 - 2MASS survey data, J, H and K bands (1.25-2.2µm)
 - number of stars \rightarrow 2'-3' resolution for nearby fields, nothing for the most distant ones
 - extinction curve is relatively robust

Bias in τ(250μm)

- line-of-sight temperature variations
 - \rightarrow colour temperature > mass-averaged T
 - $\rightarrow \tau$ underestimated
- correct using modelling
 - 3D cloud model matched with the maps
 - analyse the synthetic surface brightness, compare with the known column density of the model
- uncertainties
 - radiation field anisotropy
 - line-of-sight density structure
 - ratio between submm and NIR dust opacity

Musca filament

Upper row: residual maps for the fits to three SPIRE bands Lower row: synthetic T_c and maps and the relative bias

Bias in $\tau(J)$

- two problems
 - stellar density decreases with column density
 - extinction underestimated, depends on gradients
 - for distant fields foreground stars can be a problem
- correct using simulations
 - τ maps from Herschel (18"), simulate different realisations of background stars
 - foreground stars deduced based on Besancon model
 - other statistics derived from a reference region

Input map of NIR opacity, based on Herschel data

The simulated NICER map, average of 100 realisations

The absolute bias: <simulations> - input τ

The **correlations**

- τ (250µm) data are bias-corrected and colvolved to the resolution of τ (J) data
- fits τ(250μm) vs. τ(J)
 - possibly different $\tau(J)$ intervals
 - linear models with slop k and models including a second order term $\tau(J)^2$ with multiplier C

Based on the uncertainty of *k*, only the 21 most reliable **Selected** out of the original sample of 116 fields

Gray bands = uncertainty of the distance !

τ(250µm)/τ(J) in **ratio maps**

Date	Status
09/03/2014	pre-registration
10/03/2014	submission being registered
11/03/2014	searching for a referee
12/03/2014	sent to referee 1
19/06/2014	Referee comments sent to author
04/08/2014	Revision 1 received by Ed.
04/08/2014	Revised version to referee 1
12/10/2014	Referee comments sent to author
04/11/2014	Revision 2 received by Ed.
07/11/2014	Revised version to referee 1
19/01/2015	Accepted by Chief Editor
19/01/2015	to language editor
21/01/2015	corrected ms to author
27/01/2015	REVISED VERSION AFTER ACCEPTANCE
27/01/2015	MS sent to production office
28/01/2015	electronic files received from author by the production office
29/01/2015	preprint version available online
06/03/2015	proofs sent to author
09/03/2015	corrected proofs received from author

Estimation of dust spectral index

M. Juvela, Toulouse 17.4.2013

The problem

- apparent T and β values become correlated whenever
 - the observations contain **noise**
 - there are **temperature variations** either along the line-of-sight or otherwise within the beam
- both factors are always present
 - it is difficult to separate intrinsic dust properties from T and noise effects

Hierarchical models

• adds to the model a statistical description of the distribution of (T, β) values

GCC: opacity spectral index

Spectral index as function of temperature, column density, and wavelength

Galactic cold cores VII. Dust opacity spectral index * **

M. Juvela¹, K. Demyk^{2, 3}, Y. Doi⁵, A. Hughes^{3, 2, 8}, C. Lefèvre⁷, D.J. Marshall⁹, C. Meny^{2, 3}, J. Montillaud⁴, L. Pagani⁷, D. Paradis^{2, 3}, I. Ristorcelli^{2, 3}, J. Malinen¹, L.A. Montier^{2, 3}, R. Paladini⁸, V.-M. Pelkonen¹, A. Rivera-Ingraham^{2, 10},

- Herschel maps 160-500µm
 - zero points from Planck or AKARI
- Planck data 857-217GHz
 - significant CO corrections in the 217GHz band, less in 353GHz
 - CO(1-0) intensity from Planck Type 3 CO maps ... needs assumption of line ratios

General results based on IRAS and Planck

- expected range of temperatures and spectral indices
- relatively weak $T \beta$ anticorrelation

More clear (?) **anticorrelation** seen in higher resolution Herschel observations. Some evidence of **217GHz excess**.

Fig. 10. The same as Fig. 9 but for hypothetical errors in the $350\,\mu\text{m}$ surface brightness.

IRAS & Planck

Fig. B.3. Continued... Fields G1.94+6.07 and G2.83+21.91

Fig. B.5. Continued... Fields G4.18+35.79 and G6.03+36.73

Herschel

erschel anck Ţ

Conclusions

- Dust opacity spectral index shows clear spatial variations, anti-correlated with temperature, correlated with column density
- Based on IRAS and Planck, the median values are T = 16.1 K and $\beta_{\mbox{\tiny FIR}}$ = 1.84
- With Herschel data, we find in many clumps with values up to β \sim 2.2 (v \leq 353 GHz)
- Millimetre emission shows excess relative to the fits to submillimetre data
- Two component fits give average values of β_{FIR} = 1.91 and β_{mm} = 1.66.
- β_{FIR} is significantly higher than values reported for diffuse medium, β_{mm} is close to the values Planck studies have found for diffuse regions at high Galactic latitudes

Date	Status
04/11/2014	pre-registration
04/11/2014	submission being registered
07/11/2014	searching for a referee
10/11/2014	sent to referee 1
13/12/2014	Referee comments sent to author
09/02/2015	Revision 1 received by Ed.
09/02/2015	Revision 1 received by Ed.
10/02/2015	Revised version to referee 1
27/03/2015	Referee comments sent to author
20/04/2015	Revision 2 received by Ed.
24/04/2015	Revised version to referee 1

Modelling

3D radiative transfer modelling was already used examine τ (submm) bias

The Plan

- even higher resolution modelling \rightarrow evaluate better the structure of the cores/clumps
 - better estimates of radial profiles
 - better estimates of gravitational energy, read directly from the 3D model
- successful modelling may cause some reevaluation of the behaviour of κ and β
- extinction (and potentially even scattering) may be used for additional constraints

Juvela & Montillaud (2015a): Allsky NICER and NICEST extinction maps based on the 2MASS near-infrared survey

www.interstellarmedium.org/Extinction

NICER and NICEST maps at 3.0[′], 4.5[′], and 12[′] resolution, as Healpix files (NSIDE=2048).

Date	Status
05/10/2014	pre-registration
06/10/2014	submission being registered
07/10/2014	searching for a referee
07/10/2014	sent to referee 1
11/03/2015	Referee comments sent to author
19/05/2015	Revision 1 received by Ed.
19/05/2015	Revised version to referee 1

Juvela & Montillaud (2015b): Near-infrared extinction with discretised stellar colours

Intrinsic colours: deviations from gaussian approximation \rightarrow not very important in practice

A priori information of small-scale column density structure \rightarrow potentially significant improvements as reduced bias and reduced rms noise.

Juvela (in prep?): New **radiative transfer programs** for dust continuum calculations

- SOC Scattering calculations with OpenCL
 - improvement in run times of a factor of a few
 - compared to CRT with OpenMP parallelisation
 - potentially higher gains for GPUs, a factor of >10 compared to CRT on a single core (small models?)
- SOCAM, SOCAMP, SOCAMI
 - calculations of thermal dust emission
 - SOCAM slightly faster than CRT, SOCAMP even faster for models >> 200³ cells
 - SOCAMI uses arbitrary (but common) values for x, y, and z cell boundaries