Planck all-sky thermal dust Polarization

Witnessing how the magnetic field shapes the Milky Way ISM

Planck Collaboration Presented by J.-Ph. Bernard (IRAP) Toulouse, France

The first Planck papers in polarization

- Planck Collaboration Planck intermediate results. XIX. 2015 A&A 576,104 This presentation An overview of the polarized thermal emission from Galactic dust - Planck Collaboration Planck intermediate results. XX. 2015 A&A 576.105 Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence - Planck Collaboration Planck intermediate results. XXI. 2015 A&A 576,106 Comparison of polarized thermal emission from Galactic dust at 353 GHz with optical interstellar polarization - Planck Collaboration Planck intermediate results. XXII. 2015 A&A 576.107 Frequency dependence of thermal emission from Galactic dust in intensity and polarization See Talk by Bracco - Planck Collaboration Planck intermediate results. XXXII. arXiv:astro-ph 1409.6728 The relative orientation between the magnetic field and structures traced by interstellar dust See Talk by Arzoumanian - Planck intermediate results. XXXIII. arXiv:astro-ph 1411.2271 Signature of the magnetic field geometry of interstellar filaments in dust polarization maps - Planck intermediate results. XXXIV. arXiv:astro-ph 1501.00922 See Talk by Alves The magnetic field structure in the Rosette Nebula See Talk by Soler - Planck Collaboration Planck intermediate results. XXXV. arXiv:astro-ph 1502.0412 Probing the role of the magnetic field in the formation of structure in molecular clouds - Montier et al. 2015 A&A 574, 135, Montier et al. 2015 A&A 574, 136 See Talk by Montier Polarization measurements analysis I: Impact of the full covariance matrix on p and ψ Polarization measurements analysis II: Best estimators of polarization fraction and angle - Planck Collaboration Planck intermediate results. XXX. arXiv:astro-ph 1409.5738 The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes - BICEP2/Keck & Planck Collaboration arXiv:astro-ph 2015 PhRvL. 114, 1301 See Talk by Ghosh Joint Analysis of BICEP2/Keck Array and Planck data

Dust Polarization

- so polarization in extinction and emission
- Trace magnetic field direction projected on the sky (just like Synchrotron emission)

 $P = \sqrt{(Q^2 + U^2)} \propto \cos^2 \phi$

Plane of the sl

Stein 1966, Andersson 2012, Draine & Fraisse 2009, Hoang & Lazarian 2008, Martin 1975, 2007

Dust Polarization

Ground submm measurements (restricted to bright regions) indicate low p values (a few %)
Archeops claimed 10-15% off the plane (2nd Galactic Quadrant)

Some ISM filamentary structure show apparent connection with magnetic field ...

... although the two examples shown here (only a few degrees apart on the sky) give opposite filament orientation w.r.t. B field

How Planck measures polarization

The Planck Polarization sky

Planck intermediate results. XIX.

Noise and Bias

Montier et al. 2015a, 2015b

Polarization Fraction

Polarization angle

Lines: Direction of magnetic field as projected on the sky. Normalized length.

Uncertainties

maps of SNR on p

l° resolution

30' resolution

- Computed from mean likelihood
- Basically reflect Intensity and sky coverage

	۱°	30'	15'
SNR>2	93 %	82 %	61 %
SNR>3	89 %	72 %	48 %
SNR>5	77 %	55 %	33 %
SNR>10	53 %	34 %	19 %

- Work at 1° resolution to lower noise (also 7', 14', 30')

- Smoothed noise cov. matrix

Emission vs Extinction

- Selected 255 stars with:
 - high S/N in both vis and submm
 - $E(B-V)_s \le 1$ and $W_{co} \le 2 \text{ K km s}^{-1}$
 - similar column densities $E(B-V)_s/E(B-V)_v < 1.6$
 - similar polarization angles $\Psi_v \sim \Psi_s 90$

Planck intermediate results. XXI.

Emission vs Extinction

- Polarization efficiency ratio: $R_{S/V} = (P_S/I_S)/(p_V/\tau_V) = 4.3 \pm 0.2(stat.) \pm 0.4(syst.)$
- R_{S/V} compatible with a range of dust models, not very discriminatory.
- Polarized emission ratio: $R_{P/p} = P_S/p_V = 5.6 \pm 0.2$ (stat.) ± 0.4 (syst.) MJy sr⁻¹
- $R_{P/p}$ higher than model predictions by ~ 2.5.

More theoretical work is needed to understand the implications for dust grain physics.

Planck intermediate results. XXI.

Planck Polarization maps

Synchrotron 13'

Similarities:

Measure direction of the same component of B
Same beam and LOS depolarization effects

Differences:

Faraday rotation negligible !
Planck measures all scales : no filtering of I,Q,U like with interferometers

Dust is distributed in the thin disk of the MW (comparable to neutral HI + molecular)
Dust polarization mostly insensitive to |B|

J.P. Bernard, Planck Collaboration, B-Field Workshop, Toulouse 04/2015

Dust 4.7'

J.P. Bernard, Planck Collaboration, Cold-Core Workshop, Toulouse 06/2015 15

J.P. Bernard, Planck Collaboration, Cold-Core Workshop, Toulouse 06/2015 6

Synchrotron (30 GHz) vs Dust (353 GHz)

Dust [deg]

- Polarization fraction:
 - Measurable correlations in-plane
 - Weaker correlations off-plane
- Angles :
 - Around 0° in plane but not well correlated
 - Correlate over some regions (Fan, North Polar Spur)

Significant scatter: Synchrotron and dust not generally trace the same regions of LOS

The Planck data is unique in tracing B field in the dust disk of the MW.

Example of star forming region

 \mathbb{N}

Pkunck Collaboration

โ<u>ล</u>ุ่ม**ณุร**ุ⇒

resolution

Example of filaments where the magnetic field \perp to filaments

Example of filaments where the magnetic field follows filaments

- -

1111

/// = = \

_ _ / / / / _ _ _

1 - 1 1 1 1 - - > >

//

/ /

/ /

/ /

Cham-Eil _____

30' resolution -

B orientation vs filaments

Planck Collaboration *Planck intermediate results. XXXII*

Projection effects (3D to 2D) are crucial for the interpretation of the shape of the distribution!

B orientation vs filaments

Planck Collaboration Planck intermediate results. XXXV

The structures tend to be orthogonal to B

Polarization Fraction

Polarization fraction vs $N_{\rm H}$

 ${\cal S}$ measures polarization direction homogeneity at given spatial scale

Planck intermediate results. XIX.

28

Filamentary (Spaghetti) regions of high polarization rotation (!!)
 Some extend over large areas (must be nearby)
 Planck intermediate results. XIX.
 J.P. Bernard, Planck Collaboration, Cold-Core Workshop, Toulouse 06/2015

Filamentary (Spaghetti) regions of high polarization rotation (!!)
Correlate with low polarization

Planck intermediate results. XIX.

Synchrotron data (Reich 82, Reich & Reich 86) shows similar structures These structures also correspond to low p (depolarization canals) Those are likely due to Faraday rotation (not present at 353 GHz) The structures in the dust and synchrotron S do not match

Planck intermediate results. XIX.

Depolarization canals separate contiguous connex regions with homogenous B, but of different directions

Planck intermediate results. XIX.

Comparison to MHD simulations

- Similar behaviour of S observed in MHD simulations
- MHD shows similar S filamentary

structure

- Some differences in absolute S level ...

Planck intermediate results. XX.

Comparison to MHD simulations

Polarization fraction vs column density

Simulations reproduce well the decrease of p_{max} with $N_{\rm H}$ in the range 10^{21} to 2×10^{22} cm⁻²

Planck intermediate results. XX.

p vs wavelength

Correlation analysis using I,Q,U at 353 GHz as dust template)

over 39% of the sky. Excluding most free-free, CO, ... contaminated regions

Indications for polarization SED steeper than Intensity SED :

> $\beta^{I} = 1.52 + 0.01$ $\beta^{P} = 1.59 + 0.02$

(unaccounted for component ? ferromagnetic grains ? Carbonaceous grains ?)

New constraints on dust models and/ or component separation

Conclusions

- Planck is providing completely new largescale information on dust polarization

- This is revealing both the magnetic field geometry of our galaxy and new properties of dust emission

- Dust has high intrinsic polarization (>20%)
- p decreases with $N_{\rm H}$
- We see depolarization canals, not due to Faraday rotation
- Anticorrelation between p and angle dispersion underlines importance of the field geometry.
- New constraints for dust models.
- The Analysis is only at a start

The Data is released ...

Planck Intensity maps

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Dust Polarization

40

Various possible models lead to different predictions in polarization Variations of polarization fraction with frequency will help constrain dust models J.P. Bernard, Planck Collaboration, B-Field Workshop, Toulouse 04/2015

Data from Gaensler et al. 2009

Planck and CMB B Foreground

Planck intermediate results. XXX.